'DataFrame' object has no attribute 'append'
in PandasThe error 'DataFrame' object has no attribute 'append'
occurs in Pandas starting from version 2.0.0. The append()
method, which was previously used to add rows to a DataFrame, has been removed in this version. If you try to use it, you’ll encounter this error.
In earlier versions of Pandas, the append()
method was commonly used to add rows to a DataFrame:
import pandas as pd
# Example DataFrame
df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
df2 = pd.DataFrame({'A': [5], 'B': [6]})
# Appending df2 to df1 (deprecated in Pandas 2.0.0+)
df_combined = df1.append(df2, ignore_index=True)
print(df_combined)
Output:
A B
0 1 3
1 2 4
2 5 6
However, starting from Pandas 2.0.0, you must use pd.concat()
or similar alternatives to achieve the same functionality.
pd.concat()
The recommended replacement for append()
is pd.concat()
, which is more versatile and efficient.
import pandas as pd
# Example DataFrames
df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
df2 = pd.DataFrame({'A': [5], 'B': [6]})
# Using pd.concat() to combine DataFrames
df_combined = pd.concat([df1, df2], ignore_index=True)
print(df_combined)
Output:
A B
0 1 3
1 2 4
2 5 6
pd.concat()
ignore_index=True
: Resets the index in the combined DataFrame.axis=0
: Stacks DataFrames row-wise (default).If you are adding multiple rows iteratively, consider using a list to collect rows and create a DataFrame at the end. This is more efficient than concatenating inside a loop.
import pandas as pd
# Example rows to add
rows = [{'A': 5, 'B': 6}, {'A': 7, 'B': 8}]
df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
# Collect all rows in a list and create a DataFrame
new_df = pd.concat([df1, pd.DataFrame(rows)], ignore_index=True)
print(new_df)
Output:
A B
0 1 3
1 2 4
2 5 6
3 7 8
A common mistake is trying to append rows inside a loop. This approach is inefficient and prone to errors with Pandas 2.0.0+.
import pandas as pd
# Example inefficient approach (will fail in Pandas 2.0.0+)
df = pd.DataFrame(columns=['A', 'B'])
for i in range(3):
df = df.append({'A': i, 'B': i * 2}, ignore_index=True)
Output:
AttributeError: 'DataFrame' object has no attribute 'append'
Use a list to collect rows and convert it to a DataFrame:
# Efficient approach
rows = [{'A': i, 'B': i * 2} for i in range(3)]
df = pd.DataFrame(rows)
print(df)
Output:
A B
0 0 0
1 1 2
2 2 4
The removal of the append()
method in Pandas 2.0.0 is part of efforts to simplify the API. Switching to pd.concat()
or list-based approaches not only avoids the error but also enhances performance and code clarity. Adopting these practices ensures compatibility with the latest versions of Pandas.
Pandas: How to Access Columns by Name In Pandas, accessing columns by name is a…
Pandas: How to Access or Select Columns by Index, not by Name In Pandas, accessing…
Pandas: How to Access Row by Index In Pandas, you can access rows in a…
Pandas: How to Access a Column Using iterrows() In Pandas, iterrows() is commonly used to…
Pandas - How to Update Values in iterrows In Pandas, iterrows() is a popular method…
Pandas KeyError When Using iterrows() In Pandas, the iterrows() method is often used to iterate…