ValueError
When Using read_json
in PandasThe error ValueError: Expected object or value
occurs when using pd.read_json()
in Pandas to read a JSON file or JSON lines file, and the file is improperly formatted or empty. This article explains the causes and solutions to resolve this error effectively.
The ValueError: Expected object or value
is typically caused by:
pd.read_json()
.lines=True
).Consider the following malformed or empty JSON file named data.json
:
# Malformed or empty JSON content
When attempting to read this file with pd.read_json()
:
import pandas as pd
# Attempt to read an empty or malformed JSON file
df = pd.read_json('data.json')
Output:
ValueError: Expected object or value
Check if the file contains valid JSON data. For example, the content of data.json
should look like this:
[
{"Name": "Alice", "Age": 25, "Gender": "Female"},
{"Name": "Bob", "Age": 30, "Gender": "Male"}
]
Then, read the JSON file using:
df = pd.read_json('data.json')
print(df)
Output:
Name Age Gender
0 Alice 25 Female
1 Bob 30 Male
Ensure the JSON file has the correct structure. For instance, if the file contains multiple JSON objects, it should either be wrapped in a list or written as JSON lines (one object per line).
If your file contains JSON objects written in JSON lines format (one object per line), use the lines=True
parameter:
# Example of JSON lines file (data.jsonl)
{"Name": "Alice", "Age": 25, "Gender": "Female"}
{"Name": "Bob", "Age": 30, "Gender": "Male"}
df = pd.read_json('data.jsonl', lines=True)
print(df)
Output:
Name Age Gender
0 Alice 25 Female
1 Bob 30 Male
Use Python’s json
module to validate the JSON content before loading it into Pandas:
import json
# Validate JSON content
with open('data.json', 'r') as file:
data = json.load(file)
print(data)
# Load into Pandas
df = pd.DataFrame(data)
print(df)
If the JSON file is malformed, use jsonlines
library or manually preprocess the file to remove errors:
import jsonlines
# Reading a malformed JSON lines file
with jsonlines.open('data.jsonl') as reader:
data = [obj for obj in reader]
df = pd.DataFrame(data)
print(df)
The ValueError: Expected object or value
error in Pandas often results from an empty or improperly formatted JSON file. By ensuring the file contains valid JSON data, using the correct parameters for JSON lines, or validating the content before reading, you can successfully load JSON data into Pandas for analysis.
Pandas: How to Access Columns by Name In Pandas, accessing columns by name is a…
Pandas: How to Access or Select Columns by Index, not by Name In Pandas, accessing…
Pandas: How to Access Row by Index In Pandas, you can access rows in a…
Pandas: How to Access a Column Using iterrows() In Pandas, iterrows() is commonly used to…
Pandas - How to Update Values in iterrows In Pandas, iterrows() is a popular method…
Pandas KeyError When Using iterrows() In Pandas, the iterrows() method is often used to iterate…